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Abstract—Anomaly detection as a subject focuses on the
identification of data point which significantly deviate from what
is the norm or the standard of the dataset. This gives anomaly
detection a wide range of applications where the detection of
irregularities is often times of crucial importance such as Business
Process Management (BPM). In this study we present a novel type
of decoder referred to as ”Edge Information Assisted Decoder”
(EIAD), working on graph data to incorporate edge indexes
and attributes into the decoding to achieve improved anomaly
detection. We tested a total of 8 encoder-decoder combinations to
comparatively evaluate them and prove the effectiveness of the
proposed method. The proposed method and the best encoder-
decoder combination, the graph attention network (GAT) encoder
and the edge-conditioned convolution (ECC) decoder yielded an
increase of 0.31 in Fl-score from 0.32 to 0.63 when compared
to the baseline multi-layer perceptron (MLP) decoder model,
both with the optimal optimizer. The empirical results show that
the proposed approach has a potential to improve graph based
anomaly detection.

Index Terms—Anomaly Detection, Graph Neural Networks,
Auto Encoders, Edge Attributes, Business Process Management

I. INTRODUCTION

Artificial intelligence (Al) is increasingly being integrated
into various domains, enhancing our quality of life by au-
tomating tasks [1], improving decision-making [2], [3], and
optimizing systems [4]. One of the critical areas where Al
plays a significant role is anomaly detection also known as
outlier detection [5] focuses on identifying data points, which
drastically deviate from the norm within a dataset [6]. Since
deviations can occur in any given domain, anomaly detection
is regarded as an important domain of research with a wide
range of applications [7], spanning anywhere from healthcare
to security, from fraud detection to Business Process Manage-
ment (BPM). BPM solutions in the digitalized modern markets
are used to maintain and govern a businesses operations.
Given the nature of these operations, BPM solutions generate
mountains of data in the form of business process event logs.
The events and incidents which occur in the real world where
the operations are carried out, are reflected within the process
event logs. The reflections of said incidents makes it so, that
event logs are prone to containing anomalous occurrences
taking place in the real world. This makes it possible to do
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anomaly detection on business process data which can be used
in a variety of process management related applications [8].
From the perspective of a business, BPM anomaly detection
can be a rather attractive usage of artificial learning based
approaches due to several reasons: BPM anomaly detection as
previously mentioned can help detect these anomalies, helping
businesses increase their operational efficiency, which in turn
can help them increase their profitability. Anomaly detection
can also be leveraged when doing risk assessments, to mitigate
any risks regarding the operational noncompliance or financial
risks. Anomaly detection for the goal of proactive prevention
can also be useful to avoid unnecessary costs when acting out
the operations. Anomaly detection can also help to make sure
that businesses act in full compliance, as significant deviations
from the norm or the standard management of operations has
the potential to indicate a breach of legality. In its essence,
BPM anomaly detection can be of significant assistance to
any given company trying to maintain and increase their
operational efficiency, making it an effective and highly useful
tool in the arsenal of any Business Intelligence (BI) specialist.
Despite how lucrative of a subject it is from a business
perspective, the research surrounding BPM anomaly detection
had its fair share of challenges. The most notable of these
challenges is the scarcity of publicly available process event
log datasets [9]. The scarcity of publicly available datasets
makes it difficult for researchers to test their approaches
across different sectors with alternating dependencies and
process flows, forcing researchers into leveraging synthetically
generated process data. Another commonly faced challenge is
the lack of labeled datasets [10]. Given that the human cost of
assigning BI specialists to navigate through the process logs
to detect genuine instances of anomalies is so high and often
times not possible. Due to the expense of manual labeling of
genuine anomalies, researchers either end up having to resort
to the usage of injected anomalies, where the the evaluation
assumes that the pre-injection dataset does not contain any
anomalies and the only anomalies existing within the dataset
are the injected ones, hence yielding lower F1-scores than what
should be due to the increasing number of false positives, or
the usage of data analysis to detect deviations to evaluate the



model based on.

In this study, we deployed a series of Auto-Encoder (AE)
models with varying types of decoders to present a novel type
of Graph Neural Network (GNN) based AE previously used in
our related works, with the novelty being the decoder which
will be referred to as “Edge-Information Assisted Decoder”
(EIAD). It leverages the information found on edges to en-
hance anomaly detection performance. The study was done
on the dataset the predecessor studies were done on to yield a
more rigorous comparison between the available architectural
performances achieved. For evaluation, we used the injections
which are commonly used by other researchers to do model
performance testing [11]. Throughout our study, we’ve:

o Conducted exhaustive testing to properly evaluate differ-

ent architectures.

o Successfully deployed and demonstrated a novel type of

decoder architecture for enhanced anomaly detection.

The remainder of this proceeding is split into 4 main sec-
tions: the Related Works section will go over the predecessor
studies we’ve done to this alongside providing the reader
with brief insights of relevant studies conducted by other
researchers, the Methodology section will elaborate on the
approach deployed within this study, the Experimental Results
section will go over the results of the leveraged methodology,
lastly in the conclusion section will go over the findings of
our study.

II. RELATED WORKS

Anomaly detection as a subject has been researched ex-
tensively for its applications in various domains involving
data. Within the business process anomaly detection domain,
anomaly detection is usually classified into three types of
anomalies: trace level, event level and attribute level [8]. Trace
level anomalies represent business process instances or records
which happen to have at least one anoamlous event or attribute.
An anomalous event refers to an event that at least has one
anomalous attribute and an attribute level anomaly represents
an anomalous attribute. For detection on different levels, many
researchers before us leveraged AE based approaches such as
Nolle et al. [12] in 2016. The researchers leveraged denoising
AEs to build a model that can learn what business process
event logs are supposed to be like despite the existing noise
found within natural data. In 2021, Huo et al. [13] leveraged a
graph data structure, representing business process event logs
alongside a Graph Auto-Encoder (GAE) model to do business
process anomaly detection. Using this method, researchers got
a reasonably high trace level Fl-score proving the effective-
ness of their proposed approach. In a different study by Guan
et al. [14], the researchers developed a weakly supervised
AE referred to as "WAKE”. By leveraging a pre-trained
AE, WAKE generates feature representations from the input
vectors, creating 3 components: latent feature representation,
the reconstruction error and maximum reconstruction error
vector. The process then continues by feeding the features into
a multi-layer perceptron (MLP) which works as an anomaly
score generator. By leveraging the proposed method, authors

achieved to get higher F1-score than state of the art models at
the time on both real world, and synthetic data.

Processing business process data in the form of graph
data structure is also something that is used to do anomaly
detection. Graph data structure can help capture the complex
nature of highly interconnected business processes, helping to
do better anomaly detection [15]. In our previous researches
regarding the model which now we are doing a comparison
of, we worked on a way to automate supervision for Auto-
Encoder training. Based on Z-scores generated form the re-
construction error we selected and left out models with a score
higher than a threshold, achieving 0.07 F1-score improvement
at the most significant threshold. Following that study, an-
other reasearch was started about the incorporation of natural
language based embeddings into the graph structure, in the
form of additional node and edge features [16]. Leveraging the
same model, we’ve achieved an increase in F1-score of 0.097
which indicates that the incorporation of natural language
embeddings can significantly increase anomaly detection per-
formance when working with AEs.

III. METHODOLOGY

In this research, we experimented on different GAE archi-
tectures with the main differences between them being the
decoders. Leveraging graph convolutions and additional infor-
mation found on edges for the decoding task, the EIAD model
deviates away from the standard definition of an AE. The study
was conducted on the same dataset, which its predecessor
was done on [15], with injection labels at 0.10 contamination,
albeit with some differences in the graph construction.

A. Graph Construction

Constructed graphs consist of two main components: transi-
tions which are represented by the edges and states which are
represented by the nodes. By creating a mapping of the states
found within the case, initial step is to create unique nodes,
representing unique states within the process trace. The same
mapping is latter used in the generation of pre-aggregated
edges where edges can be duplicates of one another. Once
their generation is done, the edge features are summed for
each unique type of edge, finalizing the structure. The resulting
graphs with respect to the specific dataset, are graphs with
n X 12 node features and m x 32 edge features.

B. Edge Information Assisted Decoder (EIAD)

Multiple tests were conducted using various convolutional
operators which were previously used in our experiments,
testing their yielded performances. Yet the main novelty
proposed is what will be referred to as EIAD, which as
shown in Figure 1, composes of graph convolutional layers
and leverages additional features as input from the edges. The
additional information comes in the form of edge indexes and
edge attributes from the original input graph, passed to the
decoder alongside the latent features. This causes the EIAD
model to deviate away from the standard definition of an AE
where: a typical AE composes of an encoder, latent feature



representations and a decoder, where the encoder learns to
generate meaningful latent feature representations of the input
features, later feeding them into the decoder which learns how
to reconstruct said feature representations [17]. In contrast,
our proposed approach feeds more than the latent feature
representation into the decoder. This effectively turns the task
of the model into prediction problem, where the input feature
set X composes of latent feature representations of node
features and edge information, and original node feature set is
the target variable y.

Fig. 1. GAE Model with Edge Information Assisted Decoder

C. Evaluated Encoders and Decoders

As mentioned, throughout the experiment a pool of various
encoder and decoder architectures were tested to evaluate
their performance. With regards to the encoders deployed
we leveraged two different types of neural networks that
can compute on edge attributes. Due its success within the
previous two studies which it was leveraged in [15], [16],
the initial encoder leverages the Edge-Conditioned Convolu-
tional (ECC) layers (A.K.A. Neural Network Convolutions,
NNConv), where the layers use a neural network to compute
the edge attributes as one of its parameters. The other encoder
architecture leveraged uses another edge computation capable
type of network referred to as ”Graph Attention Network™
(GAT), which leverages masked self-attentional layers [18].
On the side of the decoders, an MLP architecture was used
as a baseline decoder architecture, as MLPs are the most

commonly used neural network architecture and are proven
to be effective solutions across various domains where deep
learning based solutions are applicable [19]. The remaining de-
coders are built with the same operators as the ECC and GAT
encoders with the exception of Graph Convolutional Network
(GCN) Encoder, which leverages spectral graph convolutions
to convolute over graph structured data [20]. The main reason
behind the utilization of the GCN Encoder is that the model
does not compute on edge features, but solely on edge indexes
and edge weights when available. This helps create a baseline
for when working solely on node features and edge indexes.

D. Model Training and Evaluation

A total of 8 combinations between 2 different types of
encoders and 4 distinct types of decoders were trained using
3 different optimizers: Adam, Adamax and Adagrad. Each
model was trained for a 100 epochs and checkpointing was
applied to get each model in its best performing state with
regards to the training loss. The evaluation was done using
the Mean Squared Error (MSE) of each reconstructed node.
Similar to what was done in the predecessor study [15], 3
significant thresholds of 99th, 95th and 90th percentile points
of reconstruction errors were chosen for Fl-score calculation.
Any node with a reconstruction error above any of these
thresholds were labeled as anomalous for the respective thresh-
old, resulting in three sets of predictions. The significance
of the thresholding approach for Fl-score calculation, lies
within the real-world applicability of the proposed solution. A
system which employs reconstruction based anomaly detection
is likely to return an anomaly score or a probability of sorts, in
contrast to a prediction. A potential user would likely expect
an instance with a higher score to have a higher likelihood of
being anomalous. Given this, each percentile point represents
an anomaly score and above, such as the 90th percentile
representing an anomaly score of 90 and above. The usage of
Fl-score for the evaluation is also significant because it is a
measure of class balance as well as a measure on how well the
positive class is predicted, the positive class in our case being
the anomalies. Hence, the thresholded F1-score calculation is
a way to calculate the effectiveness of the proposed approach
at different scores in a real world deployment scenario. Lastly,
as the graph construction does not allow for event or attribute
level detection, each trace that contained at least one or more
anomalous nodes were predicted as anomalous and a set of
three F1-scores for each model was acquired.

IV. EXPERIMENTAL RESULTS

When we take a look at Table I, it can be seen that
GAT based encoder model yields much superior performance
with ECC Encoder only matching it at the minimum for
95th percentile. Across all other points of evaluation, GAT
Encoder outperforms its ECC equivalent. Specifically, at the
99th minimum we can see that the GAT Encoder more than
doubles the performance of its counterpart, displaying its
superiority in higher thresholds where one would expect to
find more true positives. At the maximums, we can see that the



ECC Encoder models at a maximum can get a 0.47 Fl-score at
the 95th percentile threshold, whereas at the same threshold
GAT Encoder yields a 0.63 maximum Fl-score, an almost
40% increase displaying superiority over its counter part. The
results show that the trend of GAT Encoder outperforming
ECC Encoder is consistent at every aggregation and at all
threshold points, with the exception of 95th minimum. This
indicates that the GAT Encoder significantly outperforms
its counterpart when capturing essential features regarding
the nodes. Additionally, the consistency accross aggregations
suggest that the model is rather stable in comparison to its
counterpart. The results show that the GAT based encoder is
far more suitable in comparison to its counterpart, especially
where more precisionn is necessary as demonstrated by its
performance at the 99th percentile making GAT Encoder far
more reliable. The most notable indicator to this might be
the mentioned more than double performance at the 99th
minimum.

TABLE I
ENCODER AGGREGATED TRACE LEVEL F1-SCORES

Encoder Aggregation 99th 95th 90th
Max 0.33 0.47 0.44

ECCEncoder Mean 0.22 0.30 0.27
Min 0.09 0.19 0.17

Max 0.35 0.63 0.52

GATEncoder Mean 0.28 0.37 0.28
Min 0.19 0.19 0.18

When we inspect Table II, we can see that all the decoders
perform about the same for the 99th max with the exception
of ECC Decoder that performs 0.02 higher. We start to see the
real differences at the mean and minimum points, where the
ECC Decoder starts to show its superiority over its equivalents.
At mean score points the only decoder that can match it is
the GAT Decoder both getting an Fl-score of 0.29 whereas
the baseline MLP Decoder only got 0.20. The difference is
much more represented at the minimum point where the ECC
Decoder got 0.25 in contrast to the 0.16 by GAT and GCN
Decoders and the 0.09 by the MLP. When we move towards
the 95th percentile threshold the difference in performance is
further displayed by the ECC Decoder yielded a maximum of
0.63 in contrast to the 0.35 yielded by GCN Decoder, 0.33
yielded by the GAT and the 0.32 yielded by the MLP. The
mean points at the 95th also show that the ECC Decoder is
the superior choice, yielding almost double the performance
of the GCN, GAT and the MLP.

One other thing that should be considered is the importance
of the optimizer choice. The results show us that the optimizer
which performs the best is the Adamax with an Fl-score
0.63 at the 95th percentile. Despite Adamax yielding the top
performance, we can see that other points have different stories
such as Adam toppling Adamax with an Fl-score of 0.35
at the 99th percentile or matching it with 0.51. Adagrad on
the other hand yielded disappointing results yielding lower
Fl-scores across the board. With respect to the previously
noted observations, when regarding the worst possible case,

TABLE II
DECODER AGGREGATED TRACE LEVEL F1-SCORES

Encoder Aggregation 99th 95th 90th
Max 0.31 0.32 0.25

MLPDecoder Mean 0.20 0.23 0.20
Min 0.09 0.19 0.17

Max 0.33 0.35 0.30

GCNDecoder Mean 0.23 0.30 0.25
Min 0.16 0.24 0.21

Max 0.33 0.33 0.26

GATDecoder Mean 0.29 0.31 0.23
Min 0.16 0.24 0.18

Max 0.35 0.63 0.52

ECCDecoder Mean 0.29 0.51 0.43
Min 0.25 0.38 0.31

Adamax seems to be the safest option, since in every threshold
it yielded the highest minimum F1-score.

TABLE III
OPTIMIZER AGGREGATED TRACE LEVEL F1-SCORES

Encoder Aggregation 99th 95th 90th
Max 0.31 0.57 0.41

Adagrad Mean 0.24 0.34 0.25
Min 0.08 0.21 0.18

Max 0.35 0.61 0.51

Adam Mean 0.24 0.32 0.28
Min 0.09 0.18 0.16

Max 0.33 0.63 0.51

Adamax Mean 0.26 0.34 0.28
Min 0.15 0.21 0.19

Lastly, regarding the 90th percentile F1-scores, in Figure 2
we can see that there is a highly noticable increase in F1-score,
most notably for the ECC decoder, which the mean F1-score
almost doubles. After the 95th percentile however, there is a
significant drop in F1-scores when we move towards the 90th
percentile we can notice a drop in Fl-scores across all of our
decoder architectures. This can be attributed to the increasing
number of false positives lowering our F1-score.

V. CONCLUSION

In this research, we proposed the Edge Information Assisted
Decoder, as a novel way of enhancing graph based anomaly
detection using AEs. By utilizing the information found on
the edges we successfully managed to apply the proposed
methodology in the BPM anomaly detection domain, and
proved its effectiveness. The EIAD demonstrated superior
performance in comparison to the baseline MLP method,
especially the decoder with the ECC operators. The superior
performance of the ECC Encoder can be attributed to its
superior edge feature computation capabilities, whereas the
fact that it performed best when paired with the GAT Encoder
shows to us that when it comes to the generation of the node
feature representations the GAT Encoder works far better when
considering the maximum F1-scores of 0.63 and 0.47. Lastly,
the optimizer choice did yield a non-negligible difference
where the Adamax performed 0.02 better than Adam and 0.06
better than Adagrad in F1-score at the 95th point. This research
contributes to the graph based anomaly detection approaches
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and the ongoing efforts to refine it. Future work may focus
on leveraging a more complex architecture or verifying the
approach on multiple datasets.
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